

AREA \& VOLUME

Areas of some well-known figures are given below:

Do You know?	$\begin{aligned} & \text { S. } \\ & \text { No. } \end{aligned}$	Name	Figure	Perimeter in units of length	Area in square units
Diagonal $=a \sqrt{2}$ Rectangle: Diagonal $=\sqrt{a^{2}+b^{2}}$ Parallelogram:	1.	Rectangle	$\mathrm{a}=\text { length }{ }^{\text {ch}}$ $\mathrm{b}=\text { breadth }$	$2(a+b)$	ab
The diagonals bisect each other. Sum of adjacent angles $=180^{\circ}$ Rhombus:	2.	Square	$\mathrm{a}=\text { side }$	4a	$\frac{a^{2}}{2}(\text { diagonal })^{2}$
The diagonals cut at right angles $a^{2}=\left(1 / 2 d_{1}\right)^{2}+\left(1 / 2 d_{2}\right)^{2}$	3.	Parallelogram	$\mathrm{a}=$ side $\mathrm{b}=$ side adjacent to a $\mathrm{h}=$ distance between the opp. parallel sides	$2(a+b)$	ah

TIPS

Quadrilateral:
In a cyclic quadrilateral sum of the opposite angles = 180°.
Trapezium:
The median is equal to half of the sum of the parallel sides.

Isosceles trapeziums have non-parallel sides equal.

TIPS

Right Angled Triangle
The mid point of the hypotenuse is the circum centre of the
Δ circum radius $=\frac{1}{2}$
hypotenuse.
Equilateral Triangle:
$r=\frac{1}{3} h$
$R=\frac{2}{3} h$

4.	Rhombus	a = side of rhombus; $\mathrm{d}_{1}, \mathrm{~d}_{2}$ are the two diagonals	4a	$\frac{1}{2} d_{1} d_{2}$
5	Quadrilateral	$A C$ is one of its diagonals and h_{1}, h_{2} are the altitudes on AC from D, B respectively.	Sum of its four sides	$\frac{1}{2}(A C)\left(h_{1}+h_{2}\right)$
6.	Trapezium	a, b, are parallel sides and h is the distance between parallel sides	Sum of its four sides	$\frac{1}{2} h(a+b)$
7.	Triangle	b is the base and h is the altitude. a, b, c are three sides of Δ.	$a+b+c=2 s$ where s is the semi perimeter.	$\frac{1}{2} b \times h$ or $\sqrt{s(s-a)(s-b)(s-c)}$
8.	Right triangle	d(hypotenuse) $=\sqrt{b^{2}+h^{2}}$	$b+h+d$	$\frac{1}{2} \text { bh }$

9.	Equilateral triangle	$\begin{aligned} & \mathrm{a}=\text { side } \\ & \mathrm{h}=\text { altitude }=\frac{\sqrt{3}}{2} \mathrm{a} \end{aligned}$	3 a	(i) $\frac{1}{2}$ ah (ii) $\frac{\sqrt{3}}{4} \mathrm{a}^{2}$
10.	Isosceles triangle		$2 \mathrm{a}+\mathrm{c}$	$\frac{c \sqrt{4 a^{2}-c^{2}}}{4}$
11.	Isosceles right triangle	d(hypotenuse) $=a \sqrt{2}$ $\mathrm{a}=$ Each of equal sides. The angles are 90°, $45^{\circ}, 45^{\circ}$.	$2 a+d$	$\frac{1}{2} a^{2}$
12.	Circle	$r=$ radius of the circle $\pi=\frac{22}{7} \text { or } 3.1416$	$2 \pi r$	πr^{2}
13.	Semicircle		$\pi r+2 r$	$\frac{1}{2} \pi r^{2}$

If the area and perimeter of a rectangle are $240 \mathrm{~cm}^{2}$ and 68 cm respectively, find its length and breadth.
Sol. Area A $=240 \mathrm{~cm}^{2}$
Perimeter $P=68 \mathrm{~cm}$
Length $\mathrm{I}=$? \& Breadth $\mathrm{b}=$?

$$
\begin{equation*}
A=\ell b=240 \tag{1}
\end{equation*}
$$

\& $P=2[\ell+b]=68$
$\Rightarrow \ell+\mathrm{b}=34$

The two adjacent sides of a parallelogram are 12 and 14 metres respectively, and if the diagonal connecting the ends is 22 metres, find the area of the parallelogram.
Sol. One side $\mathrm{a}=12$ metres
Second side $b=14$ metres
Diagonal c = 22 metres
In a parallelogram,
$A=2$ Area of a triangle

$$
A=2 \sqrt{S(S-a)(S-b)(S-c)}
$$

Where, $S=\frac{a+b+c}{2}=\frac{12+14+22}{2}=24$

$$
\begin{aligned}
\therefore A & =2 \sqrt{24 \times(24-12)(24-14)(24-22)} \\
& =2 \sqrt{24 \times 12 \times 10 \times 2}=24 \sqrt{10} \times 2=151.78 \mathrm{~m}^{2}
\end{aligned}
$$

VOLUME

Do You know? Cuboid:	S.	Nature of the solid	Shape of the solid	Laterall curved surface area	Total surface area	Volume
The length of diagonal $=\sqrt{l^{2}+b^{2}+h^{2}}$ Cube: The length of the diagonal $=a \sqrt{3}$	1.	Cuboid		$2 \mathrm{~h}(\mathrm{l}+\mathrm{b})$	$2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$	Ibh
$\text { diagonal }=a \sqrt{3}$	2.	Cube	a = edge	$4 a^{2}$	$6 \mathrm{a}^{2}$	a^{3}
	3.	Right prism		(perimeter of base) \times Height	2 (area of one end) + lateral surface area	Area of base \times height
	4.	Right circular cylinder	$r=$ radius of base $h=$ height of the cylinder	$2 \pi \mathrm{rh}$	$2 \pi r(r+h)$	$\pi r^{2} h$

$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Nature of the solid	Shape of the solid	Laterall curved surface area	Total surface area	Volume
5.	Right pyramid		$\frac{1}{2}$ (Perimeter of the base) \times (slant height)	Area of the base + lateral surface area	-- $\frac{1}{3}$ (AB̄ēa of base) \times height
6.	Right circular cone	$h=$ height $r=$ radius I = slant height	$\pi \mathrm{rl}$	$\pi r(1+r)$	$\frac{1}{3} \pi r^{2} h$
7.	Sphere		-	$4 \pi r^{2}$	$\frac{-4}{3} \pi r^{3}$
8.	Hemisphere		$2 \pi r^{2}$	$3 \pi r^{2}$	$\left(\frac{2}{3} \pi r^{3}\right)$
9.	Spheric -al shell	$\begin{aligned} & \mathrm{R}=\text { outer radius } \\ & \mathrm{r}=\text { inner radius } \end{aligned}$	-	$4 \pi\left(R^{2}-r^{2}\right)$	$\frac{4}{3} \pi\left(\mathrm{R}^{3}-\mathrm{r}^{3}\right)$
10.	Volume of bucket				$\frac{\pi h}{3}\left(R^{2}+r^{2}+R i\right)$

