8

AREA & VOLUME

Areas of some well-known figures are given below:

				1	
Do You know ?	S. No.	Name	Figure	Perimeter in units of length	Area in square units
Square: Diagonal = a $\sqrt{2}$ Rectangle: Diagonal = $\sqrt{a^2 + b^2}$ Parallelogram: The diagonals bisect each other. Sum of adjacent angles = 180° Rhombus:	1.	Rectangle	a = length b = breadth	2(a + b)	ab
	2.	Square	a = side	4a	a^2 $\frac{1}{2}$ (diagonal) ²
The diagonals cut at right angles a ² = (1/2d ₁) ² + (1/2d ₂) ²	3.	Parallelogram	a a = side b = side adjacent to a h = distance between the opp. parallel sides	2(a + b)	ah

Top Careers & You

Top Careers & You

9.	Equilateral triangle	$a = side$ $h = altitude = \frac{\sqrt{3}}{2}a$	За	(i) $\frac{1}{2}$ ah (ii) $\frac{\sqrt{3}}{4}$ a ²
10.	lsosceles triangle	a = a $a = equal side$	2a + c	$\frac{c\sqrt{4a^2-c^2}}{4}$
11.	Isosceles right triangle	a a d(hypotenuse) = $a\sqrt{2}$ a = Each of equal sides. The angles are 90°, 45°, 45°.	2a + d	$\frac{1}{2}a^2$
12.	Circle	r = radius of the circle $\pi = \frac{22}{7}$ or 3.1416	2πr	πr ²
13.	Semicircle	r = radius of the circle	πr + 2r	$\frac{1}{2}\pi r^2$

If the area and perimeter of a rectangle are 240 cm² and 68 cm respectively, find its length and breadth.

Sol. Area A = 240 cm^2 Perimeter P = 68 cmBreadth b =? Length I =? & $A = \ell b = 240$(1) & P = 2[ℓ + b] = 68 $\Rightarrow \ell + b = 34$(2) : From (1) & (2) $\ell^2 - 34 \ell + 240 = 0$ ℓ (34 - ℓ) = 240 or $(\ell - 24) (\ell - 10) = 0$ $\Rightarrow \ell = 24 \text{ or } \ell = 10$ \Rightarrow b = 10 or b = 24

The two adjacent sides of a parallelogram are 12 and 14 metres respectively, and if the diagonal connecting the ends is 22 metres, find the area of the parallelogram.

VOLUME

Do You know ? <u>Cuboid:</u>	S. No	Nature of the solid	Shape of the solid	Lateral/ curved surface area	Total surface area	Volume
The length of diagonal = $\sqrt{l^2 + b^2 + h^2}$ <u>Cube:</u> The length of the	1.	Cuboid	I I = length	2h (l + b)	2(lb + bh + lh)	lbh
diagonal = a √3	2.	Cube	a = edge	4a²	6a ²	a ³
	3.	Right prism		(perimeter of base) × Height	2 (area of one end) + lateral surface area	Area of base × height
	4.	Right circular cylinder	r = radius of base h = height of the cylinder	2πrh	2πr(r + h)	πr²h
			·			

S. No	Nature of the solid	Shape of the solid	Lateral/ curved surface area	Total surface area	Volume
5.	Right pyramid		$\frac{1}{2}$ (Perimeter of the base) × (slant height)	Area of the base + lateral surface area	$\frac{1}{3}$ (Area of base) × height
6.	Right circular cone	h = height r = radius I = slant height	πrl	πr(l + r)	$\frac{1}{3}\pi r^2h$
7.	Sphere	r = radius		$4\pi r^2$	$\frac{4}{3}\pi r^3$
8.	Hemi- sphere	r = radius	2πr ²	3πr ²	$\left(\frac{2}{3}\pi r^3\right)$
9.	Spheric -al shell	R = outer radius r = inner radius		4π (R ² -r ²)	$\frac{4}{3}\pi(R^3-r^3)$
10.	Volume of bucket	R h r			$\frac{\pi h}{3}(R^2+r^2+Rt)$

Top Careers & You